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Distribution learning



Distribution learning

(i) Unknown distribution over finite space X : µ ∈ P(X ).
(ii) Access to a sample

X = (X1,X2, . . . ,Xn) ∼ µ⊗n.

(iii) Total variation metric

∥µ − ν∥
TV
=

1
2 ∑
x∈X

|µ(x)− ν(x)| .

(iv) Sample complexity for ε-precision, (1− δ)-confidence

n0(ε, δ)
.
= argmin

n∈N

{
inf
µ̂n

sup
µ

PX∼µ⊗n (∥µ̂n − µ∥
TV
> ε) < δ

}
,

(v) Design lower and upper bounds for n0(ε, δ),

L(ε, δ) ≤ n0(ε, δ) ≤ U(ε, δ).

(vi) Answer (folklore for |X | < ∞) ( Dimension free? )

n0(ε, δ) = Θ
(
|X | ∨ log 1/δ

ε2

)
.
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Background – Markov chains

(i) Discrete time, time homogeneous Markov chain,

X = (X1,X2, . . . ,Xm)

∀x ∈ Xm,P (X = x) = µ(x1)
m−1

∏
t=1

P(xt , xt+1).

(ii) Stationary distribution πP = π.

(iii) (Often) Irreducible, aperiodic.

(iv) Mixing time

tmix
.
= argmin

t∈N

max
µ

∥∥µP t − π
∥∥

TV
≤ 1/4.

(v) (Sometimes) Reversible,

π(x)P(x, x ′) = π(x ′)P(x ′, x).
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Sampling model – Single-trajectory

(i) Single-trajectory.

(ii) No restarts.

(iii) Arbitrary starting state.

(iv) Sample complexity: length of the trajectory.
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Markov Chain Estimation



Estimation – Uniform metric

Uniform metric (suggested by John Lafferty)∥∥P − P ′
∥∥

∞
.
=

1
2
max
x∈X ∑

x ′∈X

∣∣P(x, x ′)− P ′(x, x ′)
∣∣ .

Θ(|X |2)-parameters:

m0(ε)
?
= Θ

(
|X |2

ε2

)
.

Sample complexity (Wolfer and Kontorovich, 2019, 2021)

Ω
(

|X |
πminε2

+
|X |
γps

)
≤ m0(ε) ≤ Õ

(
|X |

πminε2
+

1
πminγps

)
,

with πmin
.
= minx∈X π(x), γps

.
= maxk∈N γ

(
((P⋆)kPk)/k

)
. Details LBs
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Estimation – Uniform metric

Extension to irreducible (Chan, Ding, and Li, 2021)

m0(ε) = Θ̃
(

|X |
πminε2

+ tcov

)
,

tcov
.
= max

x1∈X
E

[
argmin
n∈N

{
min
x∈X

{
n

∑
t=1

1[Xt = x ]

}
> 0

}∣∣∣∣∣X1 = x1

]
.

(i) More delicate characterization of sample complexity with tcov.

(ii) More difficult to compute than γps, and no estimator available.

Extension to irreducible (Fried and Wolfer, 2021)

m0(ε) = Θ̃
(

|X |
πminε2

+
1

πminγps((P + I)/2)

)
,

Easy to simulate, easy to compute, possible to estimate.
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Identity Testing – Classical Results

Problem statement

Reference distribution µ0 ∈ P(X ).

Access to iid sample X1,X2, . . . ,Xn ∼ µ from unknown µ ∈ P(X ).

Distinguish between H0 : µ = µ0 and H1 : ∥µ − µ0∥TV
> ε.

n0(ε) = min
n∈N

{
min

ϕ : X n 7→{0,1}

(
Pµ0 (ϕ = 1) + max

µ∈H1
Pµ (ϕ = 0)

)
< δ

}
.

Uniformity testing: µ0 = Uniform(X ) (Paninski, 2008)

n0 = Θ̃

(√
|X |
ε2

)
.

Instance optimal testing (Valiant and Valiant, 2017)

n0 = Θ̃
(∥µ0∥2/3

ε2

)
.

11/26



Overview

Distribution learning Distribution testing

Markov chain learning Markov chain testing

12/26



Markov Chain Identity Testing



Identity Testing Problem – Problem Statement

(i) Consider a reference kernel P0.

(ii) Fix a metric (we will consider two) and a proximity parameter ε.

(iii) Sample a single trajectory from an unknown P .

(iv) Algorithm must distinguish between P = P0 or |P − P0| > ε.
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Ergodic Reference – Under the Uniform Metric

Uniform metric ∣∣P − P ′
∣∣ = 1

2

∥∥P − P ′
∥∥

∞ .

Sample complexity (Wolfer and Kontorovich, 2020)

Ω

(√
|X |

π⋆
0 ε2

+
|X |
γps0

)
≤ m0 ≤ Õ

(√
|X |

π⋆
0 ε2

+
1

π⋆
0γps0

)
.

Observe: (i) only depends on reference; (ii) unknown chain need not be
ergodic; (iii) quadratic reduction; (iv) nearly matching bounds; (v) no
dependence in initial state.

Extensions

(i) Instance specific bounds (Wolfer and Kontorovich, 2020, Th. 4.2) See .

(ii) Can extend to irreducible reference chains (Fried and Wolfer, 2021).

(iii) Can obtain rates in terms of cover times (Chan et al., 2021).
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Symmetric Chains – Under the Kazakos Divergence

Divergence / Contrast function (Kazakos, 1978)∣∣P − P ′
∣∣ = 1− ρ

(
P◦1/2 ◦ P ′◦1/2

)
(i) Not a proper metric.

(ii) Vanishes for chains with identical connected components.

(iii) Well-adapted for stochastic processes.

lim
n→∞

1
n
D1/2(Q

n∥Q ′n) = −2 log(1−
∣∣P − P ′

∣∣).
(iv) Metric domination (Wolfer and Kontorovich, 2020, Lemma 8.1)∥∥P − P ′

∥∥
∞ ≥ 2

∣∣P − P ′
∣∣ .
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State-of-the-Art – Kazakos Divergence

Conditions on P̄ Conditions on P Upper bound Lower bound

[1]
P̄ ∈ Wsym

π̄ ∝ 1
π̄min = 1/ |X |

P ∈ Wsym

π ∝ 1
πmin = 1/ |X |

π = π̄

Õ (|X | /ε +Hit) Ω (|X | /ε)

[2]
P̄ ∈ Wsym

π̄ ∝ 1
π̄min = 1/ |X |

P ∈ Wsym

π ∝ 1
πmin = 1/ |X |

π = π̄

Õ
(
|X | /ε4

)
–

[3] P̄ ∈ Wrev
P ∈ Wrev

∥π/π̄ − 1∥∞ < ε
Õ
(
1/(π̄minε4)

)
–

Table 1: [1] Daskalakis et al. (2018); [2] Cherapanamjeri and Bartlett (2019); [3]
Fried and Wolfer (2022)
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Thank you for listening!
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Dimension-free distribution learning Back

…but what if X ∼= N ?

n0(ε, δ) = Θ
(∥µ∥1/2 ∨ log 1/δ

ε2

)
.

…but what if ∥µ∥1/2 = ∞? Cut the tail!

n0(ε, δ) = Θ


∥∥∥µΘ(εδ)

∥∥∥
1/2

∨ log 1/δ

ε2

 .

…but what if no upper bound on half-norm? Do adaptively!
With probability at least 1− δ,

∥µ̂n − µ∥
TV
≤

∥µ̂n∥1/2√
n︸ ︷︷ ︸

converges

+3

√
log 2/δ

2n

(Cohen, Kontorovich, and Wolfer, 2020). 19/26



Identity Testing Back

Instance specific upper bound

m0 ≤ Õ
(

Γ(P0)
ε2

+
1

π⋆
0γps0

)
,

with

Γ(P) .
= max

x∈X

{∥exP∥2/3

π(x)

}
.

Example 1 (Simple random walk on ∆-regular graph)

m0 ≤ Õ
(
|X |

(√
∆

ε2
+

1
γps0

))
,
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Proximity lower bound Ω̃ (|X | /(ε2πmin)) Back

Strategy: Make one state both difficult to reach and hard to learn.

Gp =

Pη =


p1 . . . pd p⋆
...

...
...

...
p1 . . . pd p⋆
η1 . . . ηd p⋆

 : η = (η1, . . . , ηd , p⋆) ∈ ∆d+1


# {visits to special state} ∼ Binomial(m, p⋆)

π⋆ = p⋆

D
(
Xm
1 ∼ Pη

∣∣∣∣∣∣Xm
1 ∼ Pη′

)
≤ p⋆mD (η||η′)

Construct ε-packing w.r.t. ∥·∥∞ (with ≈ 2Θ(|X |) elements, separated
by > Θ(|X |) in Hamming distance)
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Mixing lower bound Ω (|X | log |X | /γps) Back

What about this construction ?

P(x, x ′) ≈ 1[x = x ′](1− η) + 1[x ̸= x ′]
(

η
|X |

)
γps ≈ η−1

…but we need an ε-packing w.r.t ∥·∥∞

…η,γps, ε all coupled

…only yields a lower bound of Ω(|X | /ε)
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Control of the mixing time

γps ≈
1
η

(1)

Note: ε and η are uncoupled

Lower bound on cover time
T the time to cover all the nodes in the central clique

m ⪅
|X | log |X |

η
=⇒ p(T > m) ≥ 1

20
(2)

Fail to cover =⇒ have to toss a coin.

Back
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